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1. Introduction 

The National Research Council (NRC) lists stratospheric ozone and the species that control its 
catalytic destruction as a key research challenge facing the atmospheric chemistry community in 
the 21st century (NRC, 1998).  The physical properties of aerosols and clouds affect 
stratospheric chemistry in general and stratospheric ozone in particular.  Because chemical 
reactions that take place on the surfaces of aerosols and polar stratospheric clouds (PSCs) have 
been connected to the observed springtime ozone depletion in both the Arctic and Antarctic, it is 
important to know PSC phase, size, and chemical composition.  Laboratory studies have shown 
that the heterogeneous reactions that occur on the different types of PSCs are all effective for 
activating chlorine but with different efficiencies (Carslaw et al., 1997).  The ability to accurately 
classify PSCs according to their physical characteristics will assist in our studying their 
reactivity.  In addition, using an automated method to classify PSCs as opposed to the more 
subjective approaches used in the past can result in a more efficient method for analyzing large 
data sets, particularly those from space-borne LIDARS (laser identification and ranging system). 

LIDARS have been used to study PSCs in the Arctic and Antarctic (McCormick et al., 1981, 
Poole & McCormick, 1988; Kent et al., 1990; Browell et al., 1990; Toon et al., 1990; Tabazadeh 
& Toon, 1996; Tsias et al., 1999; Toon et al., 2000). 

These studies have yielded many PSC particle classifications that were (at least initially) based 
on apparent clustering of LIDAR observables:  scattering ratio, aerosol depolarization, and color 
ratio.  The boundaries between the clusters were defined somewhat subjectively by scientists 
analyzing the data and were subsequently corroborated by deductions of microphysical 
distinctions (particle size, shape, and composition) suggested by the LIDAR observables and the 
temperatures at which the PSCs were observed. The most common of these classifications is 
presented in table 1. 

Table 1.  Summary of PSC particle classifications. 

PSC Classification Description 
Ia Large nitric acid trihydrate crystals 
Ia-enhanced NAT crystals down wind from mountain wave-induced ice clouds 
Ib Liquid ternary solution particles 
Ic Ia and Ib mix 
II Ice crystals 

 

In this study, the extensive set of PSC measurements was acquired during the stratospheric 
aerosol and gas experiment (SAGE) III ozone loss and validation experiment (SOLVE) and was 
used as the basis to classify PSCs.  Well-known statistical techniques were employed in an 
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attempt to more objectively identify the number of PSC types and their corresponding 
characteristics. 

This technique is in contrast to many of the methods used in the past which used a more 
subjective approach that relied on the researchers’ ability to discriminate between particle types, 
based upon their knowledge of the parameters used in their analysis.  The method presented here 
is potentially a more efficient method for classifying and analyzing the PSCs within the 
extensive data sets that are produced by space-based LIDAR missions such as the cloud-aerosol 
LIDAR and infrared pathfinder satellite observations (CALIPSO). 

2. SOLVE Aerosol LIDAR Data 

SOLVE was a measurement campaign focused on the processes that control ozone 
concentrations at middle and high latitudes.  The mission included the deployment of several 
aircraft-based and balloon-borne instruments and was based in Kiruna, Sweden, during the 
winter of 1999-2000.  This study employed data acquired by the LaRC aerosol LIDAR, which 
was deployed on the National Aeronautics and Space Administration (NASA) DC-8 aircraft on 
the SOLVE mission.  The LaRC aerosol LIDAR is a piggy-back instrument on the NASA 
Goddard Space Flight Center (GSFC) airborner Raman ozone, temperature, and aerosol LIDAR 
(AROTAL).  The LIDAR data used in this study were limited to the following:  total scattering 
ratio at 532 nm (R532), total scattering ratio at 1064 nm (R1064), aerosol backscatter coefficient at 
532 (β532), aerosol backscatter coefficient at 1064 nm (β1064), and aerosol depolarization ratio at 
532 nm (δ532).  Each measurement in the data set pertains to an observed ensemble of particles. 

The backscatter ratio provides information about the ratio of the backscatter from aerosols to the 
backscatter from molecules, and the aerosol backscatter coefficient is a function of the 
concentration and size of the aerosols.  Therefore, for an ensemble, a high scattering ratio implies 
that there is more backscatter attributable to aerosols than to molecules, and a high aerosol 
backscatter coefficient implies a high concentration of aerosols or the presence of large aerosols.  
Also, information about the shapes of the particles in the ensemble can be obtained from the 
aerosol depolarization ratio.  A high aerosol depolarization ratio indicates that non-spherical 
particles are a part of the ensemble being measured which is associated with solid particles as 
opposed to ensembles of liquid particles that produce low aerosol depolarization ratios.  The 
color ratio used in this analysis is defined as β532/β1064 and provides information about the sizes 
of the particles in the ensemble attributable to the wavelength dependence for particle scattering.  
Therefore, a high color ratio indicates the presence of small particles within the ensemble and a 
small color ratio indicates the presence of large particles within the ensemble.  The vertical and 
horizontal resolutions of the data products used in this study were 75 m and 2.5 km, respectively. 
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Filters were applied to the SOLVE LIDAR data to screen the PSC data for use in the cluster 
analysis.  Only data acquired during nighttime lighting conditions were used to ensure the 
greatest signal-to-noise ratio and thus the lowest chance of misidentifying a noise excursion as a 
PSC.  The altitude range was restricted to 14 to 26 km, the lower limit being the lowest range of 
the LIDAR data and the upper limit set at the maximum altitude at which PSCs were observed 
during the SOLVE mission.  The scattering ratios were restricted to R532 > 1.12 and R1064 > 1.6 
to isolate PSC data for use in the analysis, and only temperatures below 198 K were included.  
The final number of data points satisfying these filters and used as objects in the cluster analysis 
is 18,275. 

During the SOLVE mission, there were occasions when strong signals from PSCs saturated the 
detection system (i.e., the signal level exceeded the range of an amplifier or analog-to-digital 
converter), making the measurements inaccurate.  Unfortunately, it is not possible in post-flight 
analysis to determine which data were corrupted by saturation, and this may have affected some 
of the results presented in this report. 

3. Method 

3.1 Principal Component Analysis 

Principal component analysis (PCA) is a statistical method used to resolve the complicated 
variance of the multivariate set of data consisting of β532, β1064, R532, R1064, δa, β532/β1064, and 
temperature (T).  Temperature profiles were derived from the global modeling and assimilation 
office (GMAO) meteorological model.  The analysis was done with the standardized values of 
the variables, which makes them equally important by creating new variables that each have a 
mean of zero and a variance of one.  The PCA essentially redefines the data set in terms of 
derived variables that are based on linear combinations of the original variables (Preisendorfer, 
1988).  Each data point in the derived variable data set corresponds to exactly one data point in 
the original data set. 

The weight assigned to each derived variable is also a part of the output of PCA.  Thus, the 
derived variables that account for large portions of the variance of the data can be identified, 
thereby reducing the dimensions of the analysis by disregarding the derived variables that 
account for a minimal variance.  Consequently, information concerning the variance of each 
original variable may also be obtained.  A more detailed description of the method is provided by 
Felton (2003).  

3.2 Cluster Analysis 

A clustering algorithm was used to classify the clouds into groups, based on combinations of the 
derived variables from the PCA.  A particular partitioning method has been chosen to perform 

 3



 

the cluster analysis.  The technique is based on the search for representative objects among the 
many objects of the data set called “medoids” (Struyf et al., 1996).  The medoids are calculated 
so that the total dissimilarity of all objects to their nearest medoid is minimal.  A range of values 
for the number of clusters (k) desired is required as input for the clustering algorithm.  The 
natural number of clusters can be obtained from analysis of a quality index calculated for each 
cluster as well as the corresponding graphical output (Kaufman & Rousseeuw, 1990).  This 
index, named the “silhouette coefficient” (SC) by the authors, provides an indication of the 
relationship between the objects of a cluster.  The authors’ suggested interpretation of the values 
of the silhouette coefficient is that 0.71 to 1.00 imply that the clusters are well defined; 0.51 to 
0.71 imply that the clusters are reasonably defined; 0.26 to 0.50 imply that the clusters are poorly 
defined; and ≤ 0.25 imply that no substantial groupings have been found. 

Note that it is possible to obtain a relatively high silhouette coefficient for a value of k that is not 
the most natural number of clusters for the data set. 

For this reason, Kaufman and Rousseeuw (1990) suggested that the value of k that yields the 
highest silhouette coefficient should not be selected as the natural number of clusters for the data 
set unless the graphical output is also examined.  The groups should be such that the degree of 
association is strong between members of the same cluster and weak between members of 
different clusters. An example of this partitioning method is shown in figure 1. 

 4



 

 

Figure 1. An example of the partitioning method where the Mi are data points used in the 
analysis.  (A and B denote the medoids of the clusters.  Li are distances from 
medoids to members of the cluster.  The algorithm minimizes this distance. 
This example is a 2-D representation of the clustering space.) 

3.3 Simulation 

To test the clustering algorithm, random numbers were generated that are normally distributed 
about the means for the R532 and aerosol depolarization ratios of the PSC types defined by 
Browell et al. (1990).  Thus, the test data were modeled after types Ia, Ib, and II PSCs.  There 
were an equal number of points for each PSC type, and nonphysical points were not included in 
the simulation because they were excluded from the data set altogether.  The algorithm was 
asked to partition the data into two to five clusters (k = 2…5).  The means and standard 
deviations used to generate the data are given in table 2.  The resulting silhouette coefficients for 
the partitioned test data are reported in table 3.  As suggested by Kaufman and Rousseeuw 
(1990), the silhouette coefficients and the actual graphical results of the clustered data should be 
used to assess the validity of the classification. 
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Table 2. Mean (μ) and standard deviations (σ) for 
R532 and δa used to generate the test data. 

Type 
532Rμ  

532Rσ  
aδ

μ  
aδ

σ  

Ia 1.32 0.20 0.400 0.100 
Ib 5.00 1.00 0.015 0.010 
II 15.00 3.50 0.200 0.035 

 

Table 3. Mean values, μ, and standard deviations, σ, for R532 
and δa for the three clusters resulting from the k = 3 
partition of the test data. 

Cluster 
532Rμ  

532Rσ  
aδ

μ  
aδ

σ  

black 1.414 0.426 0.403 0.097 
red 4.975 1.177 0.022 0.028 
yellow 15.035 3.257 0.199 0.034 

 

The cluster plots for k = 2…5 are shown in figures 2 a, b, c, and d.  In the case of k = 2, one 
cluster is formed as the union of the type Ib and type II PSCs.  Although the silhouette 
coefficient of 0.57 suggests that these may be reasonably defined clusters, we know that type Ib 
and type II PSCs are distinct from each other because of their depolarization values.  When k = 
3, all three PSC types are accurately identified.  Despite outlying points having a negative effect 
on the corresponding silhouette coefficient, a value of 0.73 suggests that strong clusters have 
been found.  For k = 4, the type Ia and Ib PSCs are accurately identified but the type II PSCs are 
partitioned into two clusters. The lack of dissimilarity between the two clusters resulting from 
the partitioning of the type II PSCs results in a lower silhouette coefficient than the 0.73 value 
for k = 3.  When k = 5, only the type Ib PSCs are accurately identified as a cluster.  The type II 
and type Ia PSCs are partitioned into two clusters each.  The corresponding silhouette coefficient 
decreases to 0.62 because of the lack of separation between the clusters resulting from the 
partitioning of the type Ia and type II PSCs. 
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Figure 2. Test data partitioned into k = 2…5 clusters (a. k = 2 where the yellow cluster is 
the union of type Ib and type II and the black cluster is type Ia. b. k = 3 where 
the black cluster is type Ia, the red is type Ib, and the yellow is type II. c. k = 4 
where the black cluster is type Ia, the red is type Ib, and the blue and yellow 
represent the type II split into two separate clusters. d. k = 5 where the red is type 
Ib, the black and green represent type Ia split into two separate clusters, and the 
blue and yellow represent type II split into two separate clusters.) 

Thus, the silhouette coefficient of 0.73 suggests that three is the most natural number of clusters 
for the test data set.  When we look at the corresponding cluster plot, we see that all three types 
of PSCs included in the test are accurately identified as separate clusters.  Also, from examining 
the cluster plots of the other values of k, we see that the silhouette coefficient is a function of the 
homogeneity of the clusters as well as their relative dissimilarities to each other.  Table 3 shows 
the mean values and standard deviations of the clusters resulting from the k = 3 partition.  We 
can also see that the algorithm has successfully identified the type Ia, Ib, and II PSCs (black, red, 
and yellow clusters, respectively) by comparing the resulting values in table 3 to the values used 
to generate the test data in table 2.  However, although the yellow and black clusters are very 
homogeneous, the red cluster does contain some data points that do not have Ib characteristics.  
For instance, type Ia particles with low depolarization are included in the red cluster.  In 
addition, particles with a mixture of Type Ia and Ib properties (R ≈ 6 and δ ≈ 0.15) are included 
in the red cluster.  
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4. Results 

Different combinations of R532, R1064, δa, β532, β1064, β532/β1064, and T were used as input for the 
analysis to see which combination of variables is best for identifying the different types of PSCs.  
The variable combinations that included at least three of the four scattering variables (R532, R1064, 
β532, and β1064) resulted in the highest separation between clusters.  These variable combinations 
are shown in table 4.  The results of performing the analysis on variable combinations with just 
scattering ratio or backscatter coefficient are presented in Felton (2003).  These variable 
combinations resulted in clusters that have poor separation with respect to each other.  In all 
cases, PCA was used to reduce the dimensions of the analysis while still capturing at least 95% 
of the total variance of the data set.  The results are presented in three sections.  The first section 
consists of the results of the analysis performed on data from all 11 SOLVE flights for which 
acceptable data were available.  Analyzing large amounts of data in this manner shows the 
method’s usefulness in the processing of satellite data in real time for a first order classification 
of PSC types.  The second and third sections focus on individual days that have a significant 
difference in their lowest temperatures. 

Table 4. The different variable combinations that have been used in the 
analyses. 

Combination No. Variables 
A R532, R1064, δa, β532, β1064, β532/ β1064, T 
B R532, R1064, δa, β532, β1064, β532/ β1064 
C R532, δa, β532, β1064, β532/ β1064, T 

 

4.1 Full Data Set 

The percent of the variance attributed to each derived variable used in the analysis for variable 
combinations A, B, and C is shown in table 5.  For each combination, the main contributors to 
derived variables 1, 2, and 3 are the scattering variables, aerosol depolarization and color ratio, 
and temperature, respectively.  Therefore, for A, the scattering variables account for 
approximately 56% of the variance while aerosol depolarization and color ratio accounts for 
approximately 24% of the variance.  When the PCA was performed on B, the variance accounted 
for by the scattering variables increased by roughly 7% and the variance accounted for by 
aerosol depolarization and color ratio increased by less than 4%.  For C, the variance accounted 
for by the scattering variables decreased to 50% of the total variance and that of aerosol 
depolarization, color ratio, and temperature increased slightly. 
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Table 5. The percentage variance of the data set attributed to each derived variable 
used in the analyses for variable combination A, B, and C. 

Derived 
Variable 

Percent variance 
for A 

Percent variance 
for B 

Percent variance 
for C 

1 56 63 50 
2 24 28 28 
3 12 5.9 14 
4 5.0 N/A 5.8 

 

Comparisons of the analysis performed on variable combinations A, B, and C are shown in 
figures 3 and 4. The presence of liquid or solid particles within the ensembles can be inferred 
from R532 versus δa plots of figure 3, and the presence of large or small particles within the 
ensembles can be inferred from the R532 versus β532/β1064 plots of figure 4.  For each variable 
combination, the data set was partitioned into k = 2, 3, …6 clusters and the partitions 
corresponding to the three highest silhouette coefficients are presented. 
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Figure 3.  Comparisons of R532 versus δa for the analysis performed on variable combinations A, B, and C. Figure 3.  Comparisons of R532 versus δa for the analysis performed on variable combinations A, B, and C. 
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Figure 4. Comparisons of R532 versus β532/β1064 for the analysis performed on variable combinations A, B, 
and C. 

The clusters are represented by color. 

For A, in figures 3 and 4, the SC of 0.49 suggests that k = 2 is the best partition for the data set.  
Since all of the scattering variables were used, particle scattering dominates the partitioning and 
separates low and high scattering measurements indicated by the black and red clusters, 
respectively.  The clusters contain measurements with depolarizing and non-depolarizing 
particles suggesting that they are not entirely homogeneous.  When k = 3, the low scattering 
measurements are separated according to depolarization indicated by red and black clusters and a 
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yellow cluster continues to consist of non-depolarizing and depolarizing measurements.  When k 
= 4, the yellow cluster becomes entirely non-depolarizing measurements and a purple cluster 
emerges that is poorly defined, consisting of outlying measurements with very high R532 that are 
non-depolarizing with high color ratios or depolarizing with smaller color ratios. 

The results for B in figures 3 and 4 are almost identical to those of A.  Eliminating T from the 
analysis resulted in increased SCs, which suggests that many of the clusters may occur at similar 
temperatures.  This combination of variables also reduces the amount of measurements with 
small non-depolarizing particles in the purple cluster for k = 4. 

For C in figures 3 and 4, eliminating R1064 adds more weight to δa.  When k = 2, the data are now 
partitioned with respect to δa in addition to R532.  The clusters that result from the k = 3 partition 
remain the same as the three clusters in A and B.  The highest SC occurs when k = 4 and the 
clusters are now very homogeneous except for the purple cluster, which still contains the 
outlying measurements containing large particles with high R532. 

Variable combination C results in clusters that best represent the known PSC types.  For variable 
combinations A and B (which include R1064 in the analysis) in figures 3 and 4, the k = 4 partition 
results in a purple cluster that contains measurements of ensembles with large particles centered 
at δa = 0.3 as well as few small non-depolarizing particles.  Although many of these depolarizing 
measurements have lower R532 values than the non-depolarizing measurements, both have similar 
R1064 values because the depolarizing measurements contain large particles and are more efficient 
at scattering at 1064 nm.  Therefore, including R1064 impedes the accurate classification of the 
non-depolarizing measurements with high scattering ratio values.  Therefore, variable 
combination C will be used in the analyses of the individual days in the following sections. 

The black cluster that results from the use of variable combination C to partition the data set into 
four clusters (figures 3 and 4) consists of measurements of ensembles with small particles and 
has mean values of R532 = 1.252 and δa = 0.041.  These particles are centered around the origin 
and are most likely the aerosols that are precursors to PSCs.  The red cluster resembles type Ia 
measurements with mean values of R532 = 1.235 and δa = 0.231 and the yellow cluster resembles 
type Ib measurements having mean values of R532 = 2.503 and δa = 0.024.  Most of the purple 
cluster, centered at R532 = 2.5 and δa = 0.3, consists of measurements that resemble type Ia-
enhanced.  Included in this cluster are measurements that have very high R532 as do the type II 
PSCs. 

Not shown in figures 3 and 4 are the k > 4 partitions where the algorithm partitions other clusters 
further before successfully identifying the measurements indicative of the type II particles.  Two 
factors prevent the algorithm from successfully identifying these measurements.  First, type II 
measurements are far less numerous than other types of PSC measurements and tend to look like 
outliers of the Ia-enhanced cluster.  The filtered data set has a total of 18,275 data points while 
the number of data points with R532 > 5 is 176.  Secondly, the type II PSC measurements share 
optical characteristics such as high δa and low β532/β1064 with the type Ia enhanced. 
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4.2 CA For January 23, 2000 

The cluster algorithm partitioned the 6,089 measurements (objects) from January 23, 2000, into k 
= 2…6 clusters.  A flight map is provided in figure 5.  Some of the measurements on this day 
occurred during periods when the temperature was less than 188 K. 

 

Figure 5.  January 2, 2000 flight map. 

Variable combination C was used in the analysis, and the resulting SCs are shown in table 6.  
Figure 6 shows R532 versus δa and figure 7 shows R532 versus β532/β1064 for the three highest 
values of k where the blue stars are the representative objects (medoids) for each cluster.  The 
two clusters resulting from the k = 2 partition are not representative of the number of PSC types 
present because they are composed of measurements of ensembles with small and large particles 
as well as liquid and solid particles.  When k = 4, the SC reaches its maximum value of 0.40.  A 
black cluster with low R532 and low to moderate δa and a yellow cluster with low to moderate 
R532 and low δa are found.  Other resulting clusters include a red cluster with low to moderate 
R532, moderate to high δa, and moderate to high β532/β1064 and a purple cluster with high R532 and 
δa, and low to moderate β532/β1064.  There is good separation between the medoids of these 
clusters except for the yellow and black clusters.  Partitioning the data set five times results in a 
decline in SC to 0.35 because of the lack of separation between the red and green clusters. 
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Table 6.  Silhouette coefficients for 2 to 6 clusters of the January 23 data set. 

No. of 
clusters 

SC 

2 0.38 
3 0.33 
4 0.40 
5 0.35 
6 0.32 

 

 

Figure 6. R532 versus δa for k = 2, 4, and 5 for the January 23 data set.  (The blue stars are the representative 
objects of the clusters.) 

 

 

Figure 7. R532 versus β532/β1064 for k = 2, 4, and 5 for the January 23 data set.  (The blue stars are the representative 
objects of the clusters.) 

Therefore, the optimum number of clusters for January 23, 2000, is four.  The mean values of 
these four clusters are shown in table 7.  Despite having low R532, the black cluster’s low δa 

suggests that not all of the particles in these ensembles are the type Ia described by Browell et al. 
(1990).  From figure 6, it can be seen that there are many measurements in the black cluster with 
δa < 5%, which suggests the presence of more liquid particles than solid type Ia particles.  Thus, 
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the black cluster seems to be composed of a mixture of type Ia and precursor aerosol particles.  
The red cluster matches very well with the type Ia-enh described by Tsias et al. (1999) and 
Reichardt et al. (2000) which has both moderate R532 and δa.  The measurements of the yellow 
cluster that contain small spherical particles are predominantly the type Ib described by Browell 
et al. (1990). 

Table 7.  Mean values of R532, δa, and β532/β1064 for k = 4 clusters for January 23 data set. 

Cluster Mean R532 Mean δa Mean β532/ β1064 Mean T 
Black 1.386 0.064 2.962 192 
Red 2.365 0.284 1.985 191 

Yellow 2.791 0.024 3.492 188 
Purple 12.563 0.190 1.844 184 

 

The purple cluster is the type II PSCs described by Browell et al. (1990) with its high R532 and 
moderate δa.  This PSC type was not identified as a separate cluster when the entire data set was 
used as input to the analysis.  Using the smaller number of data points in the January 23 data set 
made it possible to cluster this class separately, probably because type II PSCs represent a larger 
fraction of the observations from the flight of 23 January than they do in the composite of 
observations from all the flights. 

Figure 8 is an image plot for January 23, 2000, which illustrates the spatial proximity of the 
different types of PSCs in the CA.  The first three panels in the figure show R532, δa, and 
β532/β1064, and the last panel shows the classification of the PSC measurements resulting from the 
CA.  The type Ia and precursor mixture, type Ia-enh, type Ib, and type II correspond to black, 
red, yellow and purple, respectively.  On this particular day, the aerosols were found along the 
outer edges of the type Ia-enhanced, Ib, and II PSCs, and the type Ib and type II PSCs were 
found adjacent to each other in the coldest regions of the cloud. 
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Figure 8. Image plots for January 23, 2000.  (Panels a, b, and c show R532, δa, and 
β532/β1064, respectively, and panel d shows the classification of the LIDAR 
data into clusters.  The colors are as follow:  black- PSC type Ia and 
precursor aerosol mixture, red- PSC type Ia-enh  yellow- PSC type Ib, and 
purple- PSC type II.  The gap in d represents data filtered out of the analysis 
because of excessive noise from high solar background light.) 

4.3 CA For March 5, 2000 

The cluster algorithm was used to partition the 3,844 measurements from March 5, 2000 into k = 
2…4 clusters.  The flight map for this day is shown in figure 9.  The temperatures corresponding 
to the measurements on this day were above 188 K.  The resulting silhouette coefficients and the 
graphical output are shown in figures 10 and 11. 
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Figure 9.  March 5, 2000 flight map. 

 

 

Figure 10. R532 versus δa for k = 2, 3, and 4 for March 5 data set.  (The blue stars are the representative objects of 
the clusters.) 
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Figure 11. R532 versus β532/β1064 for k = 2, 3, and 4 for March 5 data set.  (The blue stars are the representative 
objects of the clusters.) 

Although the two clusters (k = 2) result in the highest SC, the range of depolarization ratios 
suggests that the black cluster must consist of measurements of ensembles with solid and liquid 
particles.  When k = 3, the SC drops to 0.45 because while the yellow cluster remains the same, 
the black cluster from k = 2 has been partitioned into two clusters with similar R532 represented 
by the orange and black clusters.  Despite the lower SC, the k = 3 partition more accurately 
describes the particles present because the measurements with liquid particles and the 
measurements with solid particles, represented by the black and orange clusters, respectively, are 
now classified as separate clusters.  When k = 4, the SC decreases to 0.31 because of the 
extraneous partition resulting in the green cluster whose representative object is very similar to 
that of the black cluster.  Three is therefore the most appropriate number of classes for the PSCs 
observed on March 5, 2000.  The mean values of these three clusters are shown in table 8. 

Table 8.  Mean values of R532, δa, and β532/ β1064 for k = 3 clusters of March 5 data set. 

Cluster Mean R532 Mean δa Mean β532/β1064 Mean T 
Black 1.189 0.034 2.841 194 

Orange 1.211 0.129 1.847 194 
Yellow 1.879 0.023 2.914 193 

 

The black cluster has optical characteristics very similar to the black cluster in the data set for 
January 23, 2000.  This cluster is likely a mixture of solid and liquid aerosol particles.  The mean 
values for the orange cluster are almost identical to the type Ia found by Browell et al. (1990) 
with R532 < 1.5 and δa > 0.1. The presence of the small spherical particles of the yellow cluster is 
consistent with type Ib particles found by Browell et al. (1990). 

Image plots for March 5, 2000, are shown in figure 12.  The first three panels in the figure show 
R532, δa, and β532/β1064, and the last panel shows the classification of the PSC particles resulting 
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from the CA.  The type Ia and precursor mixture, type Ia, and type Ib correspond to black, 
orange, and yellow, respectively. The aerosols are found on the outer edges of the other PSC 
types.  This cloud displays a layer of type Ib PSCs directly above a layer of type Ia PSCs. 

 

 

Figure 12. Image plots for March 5, 2000. (Panels a, b, and c show R532, δa, and β532/β1064, respectively, and 
panel d shows the classification of the LIDAR data into clusters. The colors are as follows: black- PSC 
type Ia and precursor aerosol mixture, yellow- PSC type Ib, and orange- PSC type Ia.) 

4.4 Clusters in Analyses 

A total of five particle types has been identified in the cluster analyses of the SOLVE LIDAR 
data.  Four of the clusters are known PSC types and the remaining cluster resembles a mixture of 
liquid and solid background aerosol particles that are precursors to the PSC particles.  This 
precursor cluster, identified as the black cluster in this study, was often found on the outside 
edges of clouds as in figures 8 and 12 and is similar to the findings of Biele et al. (2001). All five 



 

PSC types were observed on January 23 and March 5 collectively.  On the other nine days, 
different combinations of some of these five clusters, summarized in table 9, were observed. 

Table 9.  Classification and mean characteristics of the clusters found on January 23 and March 5. 

Cluster Classification Mean R532 Mean δa Mean  
β532/ β1064 

Mean T 

Black Liquid/solid 
aerosol mixture 

1.288 0.049 2.902 193.001 

Orange Ia 1.211 0.129 1.847 194.097 
Red Ia-enhanced 2.365 0.284 1.985 190.929 
Yellow Ib 2.335 0.024 3.203 190.795 
Purple II 12.563 0.190 1.844 184.159 

 

The results of this study are consistent with the theories on the PSC particle growth continuum.  
Both type Ia and Ib PSCs are believed to start from stratospheric background aerosols, i.e., 
aqueous sulfuric acid solutions.  Tabazadeh et al. (1994) suggested that liquid sulfate aerosols 
resulted in type Ib particle formation while frozen sulfate aerosols resulted in type Ia particles.  
Type Ia-enh clouds are characterized by nitric acid hydrate particles close to thermodynamic 
equilibrium (Tsias et al., 1999) and if the temperature is low enough, the type Ib clouds freeze to 
form type II clouds (Federico et al., 2001).  Analysis of the SOLVE data supports these claims. 
The small amount of type II PSCs and many of the type Ib PSCs were observed on days with 
extremely cold temperatures (T < 188 K).  In the image plots for January 23 in figure 8, a region 
of type II particles (purple) is found embedded inside a type Ib cloud (yellow).  Figure 13 shows 
temperature versus δa for January 23 and illustrates the occurrence of type Ib and II PSC particles 
at the coldest temperatures. 
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Figure 13.  Temperatures at which the four clusters found on January 23 were observed. 

Clouds were present in 7.27% of all nighttime data.  The percentage of each PSC type found in 
the analyses is shown in table 10, and the frequency distributions for depolarization ratio and 
color ratio with the 532 nm backscatter coefficient are shown in figures 14 and 15.  The 
concentrations of the aerosol liquid-solid mixture and the type II. 

Table 10. Percentage of the total number of nighttime data points for each PSC type found 
in the analysis. 

PSC Type Total Amount of Observations Percentage 
Aerosol liquid/solid mixture 8886 48.62 

Ia 4714 25.80 
Ib 2609 14.28 

Ia-enhanced 1946 10.65 
II 120 0.66 
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Figure 14. Frequency distribution for δa versus log(β532).  (Colors correspond to total 
amount of observations in each bin.) 

 

 

Figure 15. Frequency distribution for β532/ β1064 versus log(β532).  (Colors correspond 
to total amount of observations in each bin.) 

PSCs (48.62% and 0.66%, respectively, of the PSC data) are fairly typical of data taken in the 
northern hemisphere because the temperatures usually are not extremely cold long enough to 
allow for the formation of many Type II PSC clouds.  Consistent with many other studies, the 
type Ia PSCs occurred most frequently. 
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5. Summary 

A classical statistical technique was used to objectively identify PSC types and their 
corresponding characteristics with data acquired by the LaRC aerosol LIDAR during the SOLVE 
mission.  Combinations of backscatter LIDAR measurements from which particle abundance, 
phase, and size can be inferred are used to classify the data and deduce PSC types.  The variables 
used in the analyses are R532, R1064, δa, β532, β1064, β532/β1064, and T.  PCA showed that the bulk of 
the variance in the data set is attributed to scattering.  Particle phase and size account for the 
second most weighted component of the analysis followed by temperature. 

Cluster analysis was used to classify the clouds into mutually unknown groups, based on 
combinations of the derived variables from the PCA. 

It was found that using R532, δa, β532, β1064, β532/β1064, and T as input to the analysis resulted in the 
best clusters.  When all 18,275 nighttime data points were used as input to the analysis, a liquid-
solid aerosol mixture and types Ia and Ib were accurately identified. 

Another cluster consisting of both type Ia-enhanced and type II particles was also found. 

The small relative number of type II PSC events impeded the algorithm’s ability to identify type 
II PSCs as a separate cluster. 

Cluster analysis was also performed on two individual days of the SOLVE mission.  January 23, 
2000 contained 85.8% of the type II particles.  When cluster analysis was performed on this day, 
the type II particles were recognized as a distinct cluster along with an aerosol cluster and types 
Ia-enhanced and Ib.  The CA of March 5, 2000, which did not exhibit temperatures cold enough 
for the formation of type II (T ≤ 188 K), resulted in an aerosol cluster and clusters for types Ia 
and Ib. 

The clustering algorithm also provided a measure of how well the clusters are defined, which can 
be used to determine the most natural number of clusters for the data set.  This measure, referred 
to as the silhouette coefficient, proved to be insufficient for objectively identifying the number of 
PSC types present.  This inability may be attributed to the PSC particle growth continuum 
discussed by Tabazadeh et al. (1994), Tsias et al. (1999), and Federico et al. (2001), which 
precludes a clear distinction between the optical properties of many of the PSC types.  An 
additional factor that may contribute to the low silhouette coefficients may be the uncertainty in 
the LIDAR and temperature measurements.  

The concentration of PSC particles in the data may affect the algorithm’s ability to identify 
separate clusters.  This may have been the case with the type II particles in this analysis.  When 
the entire data set was clustered, there were only 176 data points with R532 ≥ 5 of a total of 
18,275.  For all variable combinations, the algorithm failed to separate type II particles until at 



 

least k = 6.  For instance, for k = 5, the type II particles were grouped with the type Ia-enhanced 
because they have similar δa and β532/β1064.  When the data from January 23, which contained 
85.8% of the type II particles, were clustered separately, type II particles were successfully 
identified with the k = 4 partition. When we used only data with R1064 > 2 the number of data 
points for all the days decreased to 15,179 and the type II PSCs were identified with the k = 5 
partition. 

It is likely that the classification of type II PSCs can be improved with Antarctic data sets since 
they occur much more frequently because of the colder temperatures.  This may reduce the 
effects of type II PSCs occurring in such limited numbers with respect to the other types of 
PSCs.  This research may also benefit from the incorporation of additional variables that may 
help the algorithm distinguish between the PSC types.  Using aerosol depolarization at both the 
visible and infrared wavelengths may enable the algorithm to identify the cloud types presented 
by Toon et al. (2000).  It is also worth noting that this method can be used for analyzing large 
stratospheric LIDAR data sets such as the imminent satellite-based LIDAR measurements made 
by CALIPSO space-borne LIDAR. 
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